61 research outputs found

    Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants

    Get PDF
    Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6–82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions’ influence on brain age in future studies.publishedVersio

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Incident acute coronary syndromes in chronic dialysis patients in the United States11The opinions are solely those of the authors and do not represent an endorsement by the Department of Defense or the National Institutes of Health. This is a U.S. Government work. There are no restrictions on its use.

    Get PDF
    Incident acute coronary syndromes in chronic dialysis patients in the United States.BackgroundPatients on dialysis have a disproportionately high rate of cardiovascular disease (CVD). However, the incidence and risk factors for incident acute coronary syndromes (ACS) have not been previously assessed in dialysis patients.MethodsWe analyzed the United States Renal Data System (USRDS) Dialysis Morbidity and Mortality Study (DMMS) Wave II in a historical cohort study of ACS. Data from 3374 patients who started dialysis in 1996 with valid follow-up times were available for analysis, censored at the time of renal transplantation and followed until March 2000. Cox regression analysis was used to model factors associated with time to first hospitalization for ACS (ICD9 code 410.x or 411.x) adjusted for comorbidities, demographic factors, baseline laboratory values, blood pressures and cholesterol levels, type of vascular access, dialysis adequacy, and cardioprotective medications (angiotensin-converting enzyme inhibitors, calcium channel blockers, HMG-CoA reductase inhibitors (statins), beta blockers, and aspirin). Follow-up was 2.19 ± 1.14 years.ResultsThe incidence of ACS was 29/1000 person-years. Factors associated with ACS were older age, the extreme high and low ranges of serum cholesterol level, history of coronary heart disease (CHD), male gender, and diabetes. No cardioprotective medications including statins had a significant association with ACS in this study. However, medications known to reduce mortality after ACS were used in less than 50% of patients with known CHD at the start of the study, and statins were used in less than 10% of patients with CHD.ConclusionsDialysis patients had similar risk factors for ACS compared to the general population. Cardioprotective medications were not associated with a significant benefit, possibly due to their striking underutilization in this at-risk population

    Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA-Schizophrenia consortium

    Get PDF
    Objective: Based on the role of the superior temporal gyrus (STG) in auditory processing, language comprehension and self-monitoring, this study aimed to investigate the relationship between STG cortical thickness and positive symptom severity in schizophrenia. Method: This prospective meta-analysis includes data from 1987 individuals with schizophrenia collected at seventeen centres around the world that contribute to the ENIGMA Schizophrenia Working Group. STG thickness measures were extracted from T1-weighted brain scans using FreeSurfer. The study performed a meta-analysis of effect sizes across sites generated by a model predicting left or right STG thickness with a positive symptom severity score (harmonized SAPS or PANSS-positive scores), while controlling for age, sex and site. Secondary models investigated relationships between antipsychotic medication, duration of illness, overall illness severity, handedness and STG thickness. Results: Positive symptom severity was negatively related to STG thickness in both hemispheres (left: βstd = −0.052; P = 0.021; right: βstd = −0.073; P = 0.001) when statistically controlling for age, sex and site. This effect remained stable in models including duration of illness, antipsychotic medication or handedness. Conclusion: Our findings further underline the important role of the STG in hallmark symptoms in schizophrenia. These findings can assist in advancing insight into symptom-relevant pathophysiological mechanisms in schizophrenia

    What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group

    Get PDF
    First published: 29 July 2020MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.Christopher R. K. Ching .... Bernhard T. Baune ... et al

    What we learn about bipolar disorder from large-scale neuroimaging:Findings and future directions from the ENIGMA Bipolar Disorder Working Group

    Get PDF
    MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness

    What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from theENIGMABipolar Disorder Working Group

    Get PDF
    MRI‐derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta‐Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis‐driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large‐scale meta‐ and mega‐analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large‐scale, collaborative studies of mental illness

    Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group

    Get PDF
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170

    Cardiometabolic health across menopausal years is linked to white matter hyperintensities up to a decade later

    Get PDF
    IntroductionThe menopause transition is associated with several cardiometabolic risk factors. Poor cardiometabolic health is further linked to microvascular brain lesions, which can be detected as white matter hyperintensities (WMHs) using T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk for WMHs post-menopause, but it remains unclear whether changes in cardiometabolic risk factors underlie menopause-related increase in brain pathology.MethodsIn this study, we assessed whether cross-sectional measures of cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio (WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well as longitudinal changes in BMI and WHR, differed according to menopausal status at baseline in 9,882 UK Biobank females (age range 40–70 years, n premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined whether these cardiometabolic factors were associated with WMH outcomes at the follow-up assessment, on average 8.78 years after baseline.ResultsPostmenopausal females showed higher levels of baseline blood lipids (HDL β = 0.14, p < 0.001, LDL β = 0.20, p < 0.001, triglycerides β = 0.12, p < 0.001) and HbA1c (β = 0.24, p < 0.001) compared to premenopausal women, beyond the effects of age. Over time, BMI increased more in the premenopausal compared to the postmenopausal group (β = −0.08, p < 0.001), while WHR increased to a similar extent in both groups (β = −0.03, p = 0.102). The change in WHR was however driven by increased waist circumference only in the premenopausal group. While the group level changes in BMI and WHR were in general small, these findings point to distinct anthropometric changes in pre- and postmenopausal females over time. Higher baseline measures of BMI, WHR, triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI and WHR, were associated with larger WMH volumes (β range = 0.03–0.13, p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume (β = −0.27, p < 0.001).DiscussionOur findings emphasise the importance of monitoring cardiometabolic risk factors in females from midlife through the menopause transition and into the postmenopausal phase, to ensure improved cerebrovascular outcomes in later years
    corecore